Space and Missile Systems Center

Get to the Point. What's the Deal with Different Function Points Methodologies?

A Preliminary Empirical Comparison

SPACE & MISSILE SYSTEMS CO

TIMENT OF

Authors and Collaborators

Anandi Hira AHira@Tecolote.com

Katharine Mann Katharine.Mann @hq.dhs.gov

Paul Cymerman Joe VanDyke {Pcymerman, JVanDyke}@quaterni on-consulting.com

Ian Brown Ibrown@avantus federal.com

Dave Seaver David.P.Seaver .civ@mail.mil

Kevin McKeel Kevin.McKeel @logapps.com

Overview

Presentation Agenda

- Motivation and size methods explored
- Research methodology and dataset
- Results
- Conclusions

Table of Contents

Abstract	
Introduction	3
Functional Size Metrics (FSMs)	5
IFPUG Function Points (FPs)	5
Simple Function Points (SFPs)	7
COSMIC Function Points (CFPs)	8
Objective Function Points (OFPs)	9
Effective Sizing	12
Research Methodology	12
Methodology	12
Dataset	13
Calculating the FSMs	14
Objectivity of FSM Sizing	16
Prediction Accuracy Statistics	17
Analysis Results	18
Comparing FSMs against Effort	18
Using the Objective Function Points (OFPs) Methodology	29
Conclusions	33
Future Research	34
Acknowledgments	35
References	35

Get to the Point (paper) – table of contents

MOTIVATION AND SIZE METHODOLOGIES EXPLORED

Software Size Metrics

Source Lines of Code (SLOC)

Pros

- Objective
- Easy to calculate at completion

Cons

- Difficult to estimate
- Agile programs moving away from SLOC

Function Points

Pros

- Objective
- Easier to calculate early in lifecycle

Cons

- Tedious to calculate
- Difficult to get actual sizes at project completion

Agile Metrics (Story Points, T-shirt sizes)

Pros

Easy to calculate early in lifecycle

Cons

- Highly subjective
- Team-dependent

IFPUG Function Points (FPs)

Issues with FPs

Tedious - Start

Calculating FPs requires:

- Identifying all functional transactions
- Determining correct complexity levels for each

Solution: Simple Function Points

Granularity

Transactions are limited to low, average, and high complexities.

- Very Low and Low get same sizes
- Very High and High get same sizes

Solution: COSMIC Function Points

Tedious - End

- Requirements, architecture, etc. documentation don't match implemented solution.
- Getting actual sizes requires updating doc's

Solution:
Objective
Function Points

Effective Sizing

Standard Sizing

- IFPUG and COSMIC have methods to size enhancements: sizes of the changed functional processes
 - Does not account for amount of change required (% redesign, recode, retest)
 - Does not make the modified size equivalent to new development size

Effective Sizing

- Multiply FPs with weighted average of rework %'s
- Weights:

	Cadence /NSA	lan Brown
% requirements	10%	
% redesign	30%	40%
% recode	30%	25%
% retest	30%	35%

RESEARCH METHODOLOGY AND DATASET

Research Methodology

Dataset – Unified Code Count (UCC)

Overview

- Enhancement projects
- Code metrics tool
- Command line program
- Implemented in C++, Java
- Each project by new team
- 32 data points

Groupings

- Enhancement Type
 - Add new features/modules (9)
 - Modify existing features/modules (23)
- Complexity Levels
 - Low/Average: Language Parsers, Differencing (12)
 - Very Low: Additional Metric, Input/Output (20)

Calculated Sizes

COSMIC		IFPUG			Simple	Objective		
Actual Fur	nctionality	Red	quirements b	ased on Act	ual Function	Actual Code		
Anandi + C	Colleagues	Ian Brow	ın (SME)	DHS	LogApp	os/NSA	ODNI*	
	Manual	Process		Excel	Cad	ence	UCC-G	
CFPs_AH	FPs_AH	FPs_IB	EFPs_IB	SFPs_ DHS	SFPs_ Cad	ESFPs_ Cad	EOFPs	EOMPs

Several size metrics due to different inputs and methods or perspectives.

Sample Datapoint:

	CFPs_ AH	FPs_ AH	FPs_ IB	EFPs_ IB	SFPs_ DHS	SFPs_ Cad	ESFPs_ Cad	EOFPs	EOMPs
Makefile Parser	5	4	12	2.49	20.8	16.2	4.5	28.44	4.88

^{*} NRO provides Configuration Management (CM) for UCC-G. NGA has been backing the development of the Objective method by granting access to run UCC-G on a large SW effort which provided calibration opportunities.

What We're Comparing

CFPs_AH

FPs_AH

FPs_IB

EFPs_IB

SFPs_ DHS SFPs_ Cad ESFPs_ Cad

EOFPs

EOMPs

Compare to Effort

- How well do these functional size metrics correlate with effort (and therefore cost)?
- Does the loss/increase in detail used to calculate size hurt/improve effort estimates?
- Which of these methods is better/more accurate for effort estimation?
- If any, what are the drawbacks to using functional size metrics for effort estimation?

Compare to Actual Effective Sizes

- Use actual reuse %'s for CFPs_AH, FPs_AH, FPs_IB, and ESFPs Cad
- How well does this methodology predict actual, effective functional size?

SW Estimation Life Cycle

RESULTS

FPs Variants against Effort

- Sizes stacked with large variance in effort
 - Outputs are of same size
 - Complexity and number of algorithms differ
- Takeaway: lack of distribution and accounting for algorithmic complexity → low correlation
- Reduced granularity compared to IFPUG FPs caused insignificant reduction in correlations
- Takeaway: lack of distribution and accounting for algorithmic complexity → low correlation
- Stronger positive trend between size and effort due to higher distribution

Takeaway:

- better correlation (except for Low CPLX)
- fewer outliers/anchor points

Objective FPs against FP Variants

- Removed 5 outliers (new code, input functionality), and Average complexity projects (only 2)
- Standard % Error: 6-15%
- Takeaway: Promising. Not enough data for types represented in outliers

- Lack of correlation even after removal of outliers
- Not surprising not using similar counting methodologies
- Takeaway: lack of correlation due to difference in methodologies

- Lack of correlation even after removal of outliers
- Not surprising not using similar counting methodologies
- Takeaway: lack of correlation due to difference in methodologies

CONCLUSIONS

Using Function Points for Effort Estimation

- 1. Useful? **Yes**, but reduced granularity and algorithmic complexity are problematic
 - Grouping by project/ complexity type helps
- 2. Simple Function Points does the loss in granularity reduce effectiveness? **No**, not in this case
- COSMIC Function Points does increase in granularity increase effectiveness? Yes, except for the Low complexity group
- 4. Which is the best method?
 - COSMIC has the highest level of granularity
 - Automated counting from requirements for Simple Function
 Points simplifies estimation process

Using Objective Function Points for Actual Size

- Can the Objective Function Points method estimate actual functional size?

 - Standard % Error for IFPUG between 6-15%
 - Lack of trend for Simple and COSMIC
 - Could be due to UCC atypical for Function Points
- Demonstrated the technique that would be used across a more general sample or within an organization
- Objective Function Points methodology still in development phase
 - Improve through exposure of different software types

Future Research

- Using Function Points methodologies for Effort Estimation
 - Continue comparing estimation effectiveness across larger, varied datasets
- Objective Function Points methodology
 - Continue calibrating the method with larger and varied software products (currently working with NGA)
 - Come up with general conversions from OFPs to FPs

Acknowledgments

Portions of this work were funded by the Air Force Space and Missile Systems Center (SMC), contract FA8802-16-F-0002, and the Office of the Director of National Intelligence (ODNI) RC&E, through the CARRS contract. The authors thank Ms Adriana Contreras, Mr. Raj Palejwala, Mr. Jim Fiume, and Ms Michal Bohn for their support of this effort.